Suppressing on-stream deactivation of CuSiO2 catalysts in the dehydrogenation of bioethanol to acetaldehyde

Logo poskytovatele

Varování

Publikace nespadá pod Fakultu sociálních studií, ale pod Středoevropský technologický institut. Oficiální stránka publikace je na webu muni.cz.
Autoři

PAMPARARO Giovanni HLAVENKOVÁ Zuzana STÝSKALÍK Aleš DEBECKER Damien P

Rok publikování 2024
Druh Článek v odborném periodiku
Časopis / Zdroj Catalysis Science and Technology
Fakulta / Pracoviště MU

Středoevropský technologický institut

Citace
www https://pubs.rsc.org/en/content/articlelanding/2024/cy/d4cy00646a
Doi http://dx.doi.org/10.1039/d4cy00646a
Klíčová slova ACETIC-ACID SYNTHESIS; ETHANOL DEHYDROGENATION; COPPER-CATALYSTS; OXIDE ADDITIVES; ETHYL-ACETATE; CU; OXIDATION; EFFICIENT; SURFACE; NANOPARTICLES
Popis Bioethanol upgrading to valuable platform molecules is a cornerstone of the emerging "integrated biorefinery" concept. Although active catalysts have already been developed for the non-oxidative dehydrogenation of ethanol to acetaldehyde, their rapid deactivation - through coking and sintering - is still an unsolved challenge. Herein, we study a 7.4 wt% Cu-SiO2 catalyst at 573 K for 8 or 24 hours under stable ethanol feed, we report in-depth characterization of the spent catalysts to univocally describe deactivation phenomena, and we propose reaction engineering procedures based on gas co-feed (O-2 or H-2) to decisively enhance the catalyst stability. Under the standard conditions, the pristine catalyst undergoes fast deactivation, as conversion drops from similar to 95% to similar to 25% in about 8 hours. While sintering is shown to occur during the reaction, we demonstrate that the main cause of deactivation is actually the accumulation of carbonaceous deposits. Even if such deactivation is shown to be reversible (regeneration by oxidative treatment), it is more attractive to prevent it from happening. Studying the effect of gas doping, we show that introducing a small fraction of oxygen (0.44 vol%) leads to a marked decrease of the extent of coking and stabilization of catalytic activity at a much higher conversion level (75% after 24 h). A slightly higher O2 concentration (1.77 vol%) leads to complete stabilization of the ethanol conversion (90% after 24 h), but concomitantly provokes a slight drop in acetaldehyde selectivity. With the findings of this study, with optimized reaction conditions and an ameliorated catalyst formulation, an outstanding acetaldehyde productivity (2.9 gaca gcat(-1) h(-1)) was maintained fully stable for 24 h.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.